Recommender system as the central component of a successful web store
Published: 29.01.2018

- OOTB modules don’t enable setting a business objective for the recommender system;
- Business rules can’t be applied to OOTB modules, and therefore, “silly” recommendations are given;
- The performance of the recommender system offered by the OOTB modules can’t be monitored and these systems don’t improve in time.
STACC recommender system
Since displaying “bad” recommendations to users brings more damage than benefits to the company, we took up the challenge of developing a recommender system that would be easily deployed in a web environment and would use machine learning for making recommendations. Today, we have developed a product that enables the following: 1. Recommender model is guided by business objective, data and business sector During the years of development, we have implemented all of the most successful recommender models into our system. Different models are being tested in live environment and system automatically selects a model that maximizes the business objective that is set for the recommender engine (e.g. increasing sales revenue). 2. Different filters are applied to the recommendations To avoid “silly” mistakes, our system has the total flexibility to include business-specific rules and filters. The following examples help to clarify what we mean by rules:- Can the item X be recommended when the user has already bought it before?
- Example 1: If you are selling bicycles, there is no point to recommend the same bicycle to the user again.
- Example 2: If you are selling milk, you can recommend that to the user every day.
- What are the restrictions for certain items?
- Example: Intimate care products should never be recommended.
- Are there any special rules to be applied for certain user groups?
- Example 1: Never recommend field player’s gear to a goalkeeper.
- Example 2: Never recommend meat products to vegetarians.
- Additional rules:
- Example 1: Recommend only products with higher price from the same product category.
- Example 2: Don’t recommend more than two products from the same product category.
If you have a web store and you are interested in implementing an artificially intelligent recommender system, order a free recommender system demo by filling out the form below!
READ NEXT

8.12.2020 | NEWS
STACC Recommender System through the lens of architecture
Activities 2016-2017 STACC built the first recommender system back in 2016. It was an e-mail recommender that was built to…
31.08.2020 | NEWS
STACC`s team developed a profitability calculator. Take a look, try it out and read more whether and to what extent a recommendation system can benefit your e-business.
Restrictions on the spread of the COVID-19 virus significantly changed people’s shopping behavior, and a large number of customers discovered…
1.04.2020 | NEWS